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ANALYTICAL TECHNIQUES AND INSTRUMENTATION

Quantifying Surface Lipid Content of Milled Rice
via Visible/Near-Infrared Spectroscopy1

H. CHEN, B. P. MARKS, and T. J. SIEBENMORGEN1

ABSTRACT Cereal Chem. 74(6):826–831

Visible/near-infrared calibrations were developed and tested for sur-
face lipid content (SLC) of milled long-grain rice. Three rice varieties
were divided into two sample sets, with one containing two variables
(degree of milling and variety) and another containing three variables
(degree of milling, variety, and kernel thickness). The reflectance cali-
bration equation from the set with three variables was much more accu-
rate in predicting SLC than was the calibration from the two-variable set.

Optimal calibration and prediction were obtained by combining both
visible and near-infrared wavelength ranges and using the modified par-
tial least squares technique on spectra pretreated by standard normal
variate and first derivative methods. The best calibration yielded a coefficient
of determination (R2) of 0.99 and a standard error of prediction of 0.04%
SLC, which was approximately 1.5 times the standard error of calibration
and also 1.5 times the SLC measurement error.

Degree of milling (DOM) is a measure of the extent to which
rice bran has been removed from brown rice during milling. It is
an attribute that is extremely important to both the rice industry
and consumers. The amount of bran remaining affects the stabil-
ity, quality, and value of the product, with respect to appearance
and end-use functionality. Definitions for DOM can include lost
bran mass, visual changes (i.e., color), and chemical assays
(including surface lipid content [SLC], a measure of residual bran
on the kernels). Each definition has advantages and disadvantages,
depending on the specific needs of the processor and the end-user.

In terms of bran mass, DOM can be evaluated as a percent mass
lost from brown rice during milling (Wadsworth et al 1991).
However, this method does not lend itself to continuous on-line
measurements. Additionally, the results can be influenced by the
amount of broken rice (i.e., starchy mass) that exits the mill with
the bran.

Visual examination is the current standard method used by the
Federal Grain Inspection Service (USDA 1979) and is also a
common practice in the milling industry. Even with standard line
samples, this method is relatively subjective and personnel depend-
ent. Color is important for whole grain products but can be influ-
enced by factors other than residual bran.

In contrast to the above methods, chemical assays are repeat-
able and accurate means for evaluating DOM. Chemical analyses
measure specific compositional factors (e.g., surface lipids, total
lipids, thiamin, and phosphorus) associated with bran removal
(Desikachar 1955, Hogan and Deobald 1961, Wadsworth et al
1991, Siebenmorgen and Sun 1994). Although relatively accurate
and repeatable, chemical assays are costly and time-consuming for
routine or on-line DOM measurements.

Optical or spectroscopic methods are likely to be better suited
for rapid analysis of DOM (e.g., in terms of SLC). Optical meas-
urement is based on the light intensity reflected from or transmit-
ted through milled rice. Stermer (1968) found, in the wavelength
range of 500 to 1,000 nm, that the greatest changes in transmit-
tance due to milling occur at 660 nm (red color wavelength) and
850 nm (near-infrared). The ratio of light intensity transmitted at
these two specified wavelengths was related to color and surface

lipid content, with correlation coefficients of 0.93 and 0.88,
respectively. Because such an optical system is based merely on
the information from one or two wavelengths, some relevant
information hidden in other wavelengths is possibly neglected. It
is expected that near-infrared (NIR) spectroscopy, which can use
the information from multiple wavelengths or even a whole
wavelength range, would provide a more accurate means for
measuring DOM.

NIR spectroscopy has been extensively studied for applications
in the grain industry during the last two or three decades. Calibra-
tions for evaluating chemical composition (e.g., protein, moisture,
starch, and amino acids) have been developed (Finney and Norris
1978; Williams et al 1983,1984; Kim and Williams 1990; Lamb
and Hurburgh 1991; Villareal et al 1994; Delwiche 1995; Del-
wiche et al 1995,1996). Physical characteristics, such as grain
hardness and sensory quality, have also been measured via spec-
troscopic analysis (Williams 1979, Delwiche 1993, Siska and
Hurburgh 1993, Champagne et al 1996, Kawamura et al 1996).
Additionally, calibrations have been developed for specific func-
tional characteristics, such as viscosity, gross feed energy, and
gelatinization temperature (Kim and Williams 1990, Delwiche et
al 1996).

Specific to rice, a small amount of previous work has been
published in the area of DOM measurement. Stermer et al (1977)
used multiple linear regression methods to compare the reflec-
tance data (800–1,800 nm) with surface lipids, total lipids, and
bran removal. Though the correlations between NIR spectra and
the three DOM references were not as strong as desired (i.e.,
<0.84), it was concluded that NIR spectroscopy was promising as
a fast, objective method, particularly over the normal range of
commercially milled samples. Further research was carried out in
the wavelength ranges of 1,100–2,500 nm (Wadsworth et al 1991)
and 450–1,048 nm (Delwiche et al 1996). By means of the partial
least squares method, calibration equations were established with
strong correlations (>0.9) for both the DOM expressed as percent
bran removal (Wadsworth et al 1991) and the optical DOM meas-
ured by a Satake MM-1B milling meter (Delwiche et al 1996).

These previous calibrations were based on physical (i.e., mass
removed) or optical definitions of DOM. In contrast, for further
processed products, a chemical definition (i.e., SLC) is more im-
portant for product functionality and value. Siebenmorgen and
Sun (1994) evaluated the Satake MM-1B milling meter, with
respect to measurement of SLC. While strong correlations were
reported, they were highly dependent on rice variety. Additionally,
no reliable NIR calibration has yet been published specifically for
rice surface lipid content. Consequently, the specific objectives of
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this project were to evaluate the effect of sample set characteris-
tics (DOM, variety, and kernel thickness) on calibration and pre-
diction outcomes for SLC, and compare spectral pretreatment and
regression techniques for optimal calibration and prediction of
SLC in milled rice.

MATERIALS AND METHODS

Sample Preparation
Three long-grain rice varieties (Alan, Katy, and Newbonnet)

were acquired from a commercial processor at approximately 11–
13% moisture content (MC, wet basis). Prior to milling tests, each
variety was cleaned in a dockage machine and separated randomly
into two sets.

Set one was milled to 39, 35, and 38 different DOM levels for
Alan, Katy, and Newbonnet, respectively. For Alan and Katy,
rough rice was hulled in a commercial-scale Satake husker/paddy
separator (model APS-30CX, Satake USA, Houston, TX). Brown

rice was then milled in a single pass through a commercial-scale
Satake mill (model BA-7). The various DOMs were generated by
adjusting the locations of the weight on the mill lever arm. For
Newbonnet, 150-g rough rice samples were hulled in a McGill
sample huller. Brown rice was milled in a McGill No.2 rice mill
for durations ranging from 2.5 to 100 sec at intervals of 2.5 sec. A
1,500-g weight was fixed on the mill lever arm 15 cm from the
centerline of the milling chamber. By both the commercial and
laboratory milling systems, samples ranging from undermilled
rice to well milled rice were generated.

Set two was hulled in the Satake husker/paddy APS-30CX
separator, and each variety was milled to three DOM levels (low,
medium, and high) in the Satake model BA-7 mill. Head rice was
separated from brokens via a Satake test rice grader with a φ5.2
mm long-grain indented cylinder. Subsequently, using a Carter-
Day precision sizer (style No. ABF2, Carter-Day Company,
Minneapolis, MN), the head rice was separated into six thickness
fractions for Alan and Newbonnet (<1.54, 1.54–1.59, 1.59–1.64,

TABLE I
Means, Standard Deviations (SDs), Minimum, and Maximum Values of Surface Lipid Content (SLC, %),

and Number of Samples for the Two Sample Sets

Set One (n = 112) Set Two (n = 51)

Newbonnet Alan Katy Newbonnet Alan Katy

Mean 0.47 0.66 0.56 0.78 0.75 0.65
SD 0.31 0.30 0.19 0.21 0.21 0.28
Min 0.15 0.14 0.28 0.45 0.42 0.32
Max 1.35 1.14 0.94 1.15 1.12 1.09
n 38 39 35 18 18 15

Fig. 1. Surface lipid content data for sample sets one (A) and two (B).
Increasing sample number corresponds to increasing milling time on the
laboratory mill or a more restricted flow rate in the commercial mill.

Fig. 2. Correlation coefficients of each principal component with surface
lipid content (SLC) and kernel size. A, sample set one; B, sample set
two.
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1.64–1.69, 1.69–1.74, and > 1.74 mm) and five thickness fractions
for Katy (<1.54, 1.54–1.59, 1.59–1.64, 1.64–1.69, and >1.69 mm).

Thus, set one contained samples at many DOM levels within a
range, while set two contained samples with different size frac-
tions at just three DOM levels. The former set involved two inde-
pendent factors (DOM and variety), and the latter set involved
three independent factors (DOM, variety, and kernel thickness).

Visible/Near-Infrared Measurement
After milling, samples were scanned in a scanning monochro-

mator (NIRSystems 6500, formerly Perstorp Analytical, Silver
Spring, MD). For each sample, approximately 100 g was poured
into a rectangular cell, presented to the instrument in transport
mode, and scanned (reflectance) from 400 to 2,500 nm at 2-nm
intervals. Each sample was scanned 25 times without repacking
the sample, with the entire cell moving past the light beam and
detector at least once, and the average reflectance spectrum was
stored for calibration development.

Surface Lipid Extraction
Surface lipids were extracted in a Soxtec System HT, which

consisted of an extraction unit (model 1043) and a service unit
(model 1044). Prior to extraction, a cellulose extraction thimble
(26 mm diameter, 60 mm length) was filled with 5 g of head rice,
covered with a thin layer of cotton wool, and dried in a convection
oven at 100°C for 1 hr for the purpose of controlling sample
moisture content. The thimble and sample were then immersed
into 50 ml of petroleum ether (boiling point 35–60°C) in an ex-
traction cup for 30 min to extract most of the lipids on the kernel
surfaces. The sample was then raised above the solvent surface
and washed with solvent for another 30 min to rinse the lipids
remaining on the kernel surfaces. After rinsing, excess solvent
from the thimble was collected into the extraction cup for 15 min.

All of the extracted surface lipids were thereby retained inside the
extraction cup. The content of the cup was dried at 100°C for 30
min to drive off the petroleum ether. The SLC was computed as
the mass of the dry extract expressed as a percentage of the origi-
nal sample weight (5 g). This analysis was duplicated for each
sample, and results are reported as means of duplicates.

Statistical Analyses
The two sample sets were combined in three ways for calibra-

tion and prediction. In combination I, set one (112 samples) was
used as the calibration set, and set two (51 samples) was used as
the prediction set. Combination II was the inverse operation; set
two was used for calibration, and set one was used for prediction.
Combination III was performed by mixing the two sample sets
into one (163 samples in total) and then randomly separating it
into two sets, with 100 samples for calibration and 63 samples for
prediction.

Commercial spectral analysis software (NIRS 2, ISI Interna-
tional Co., Port Matilda, PA) was used to process spectral and
SLC data for calibration and prediction. To develop calibration
equations, the spectra of the calibration set were first pretreated.
Common pretreatment techniques include scatter correction and
spectral derivative (ISI International 1995). Three scatter correc-
tion methods, referred to as standard normal variate (SNV), de-
trend, and multiplicative scatter correction (MSC), were compared
for optimal calibration. First and second derivative treatments
(gap = 8 nm) were also evaluated.

Multilinear regression techniques were performed on the pre-
treated spectra and associated SLC to develop calibration equa-
tions. Four multilinear regression methods, referred to as stepwise,

TABLE II
Standard Error of Calibration (SEC), Coefficient of Determination (R2,
for Calibration), and Standard Error of Prediction (SEP), as Affected by

Different Combinations of the Two Sample Setsa

Sample Set
Combination Description

SEC
(%SLC) R2

SEP
(%SLC)

I Set one (112 sample) for
calibration

0.026 0.99 0.11

Set two (51 samples) for
prediction

II Set two (51 samples) for
calibration

0.027 0.99 0.06

Set one (112 samples) for
prediction

III Mixing two sets, 100 random
samples for calibration and
remaining 63 samples for
prediction

0.024 0.99 0.04

a Pretreatment: standard normal variate (SNV) and first derivative; reg-
ression: modified partial least squares (MPLS); wavelength ranges: 400–
700 and 1,500–2,500 nm; number of PCs: seven.

TABLE III
Standard Error of Calibration (SEC), Coefficient of Determination (R2,
for Calibration), and Standard Error of Prediction (SEP) from Different

Wavelength Rangesa

Wavelength Range, nm
SEC

(%SLC) R2
SEP

(%SLC)

400–700 0.04 0.97 0.07
1,500–2,500 0.03 0.99 0.05
400–700, 1,500–2,500 0.024 0.99 0.04
400–2,500 0.03 0.99 0.04

a Sample set: combination III; pretreatment: standard normal variate (SNV)
and first derivative; regression: modified partial least squares (MPLS);
number of PCs: seven.

Fig. 3. Second principal component versus first principal component. A,
sample set one; B, sample set two.



Vol. 74, No. 6, 1997  829

principal component, partial least squares (PLS), and modified
partial least squares (MPLS) (ISI International 1995), were used to
develop calibration equations. Calibration accuracy was evaluated by
the coefficient of determination (R2) and the standard error of cali-
bration (SEC) (Marks and Workman 1991). Once developed, the
calibration equations were applied to the independent prediction
set for validation. Prediction accuracy was evaluated in terms of the
standard error of prediction (SEP) (Marks and Workman 1991).

RESULTS AND DISCUSSION

Degree of Milling of the Two Sample Sets
Table I lists the means, standard deviations, minimum and

maximum values of SLC, and number of samples for each variety
in sets one and two. Figure 1 shows the distribution of SLC
among samples, with each data point representing an average of
two duplicated SLC measurements. A standard error of 0.027%
SLC in surface lipid extraction was calculated from the duplicated
data.

In set one (Fig. 1A), with an increase in sample number , SLC
decreased exponentially for Newbonnet and almost linearly for
Alan and Katy. Consequently, the latter two varieties had more
uniform sample distribution over the whole SLC range than did
Newbonnet. The difference in the sample distribution can be
attributed to the different milling methods used to derive the vari-
ous DOM levels. In set two (Fig. 1B), each sample represented a
single size fraction in one of the three DOM levels (low, medium,
and high). With the change of sample number, there existed obvi-
ous discontinuities in the SLC for Katy, representing the three
different DOMs achieved in the commercial mill. The discontinu-
ity was less distinct for Newbonnet and Alan. In general for set
two, Newbonnet and Alan had more uniform sample distribution
across SLC than did Katy.

Compared with set two, set one had a wider range of SLC and
more uniform and continuous sample distribution across SLC.
However, set one represented only two independently controlled
factors: variety and DOM. In set two, kernel thickness was added
as a third independent factor.

Spectral Properties of the Two Sample Sets
A principal component analysis method was used to reduce

spectral data (400–700 nm, and 1,500–2,500 nm) for each sample
to several principal components (PC). For the two sample sets,
correlation coefficients of the first 10 PCs with SLC were calcu-
lated (Fig. 2). For sample set two, the correlation of each PC to
kernel thickness was also computed (Fig. 2B). For both sample
sets, the first PC had the strongest correlation with SLC. These
correlation coefficients were –0.88 for set one and –0.74 for set
two. The negative values indicated that the first PC was inversely
related to SLC. As another independent factor in set two, kernel
thickness was most highly correlated with the sixth PC
(correlation coefficient –0.6).

Figure 3 shows the second PC versus the first PC for the two
sample sets (400–700 nm and 1,500–2,500 nm). In set one (Fig. 3
A), Alan was discriminated clearly from the other two varieties by
the second PC. In other words, variety was a significant factor
affecting visible/NIR spectroscopy in sample set one. In set two
(Fig. 3B), the three varieties could not be discriminated from each
other by either the first PC or second PC. Variety had much less
effect on visible/NIR spectroscopy in set two than it did in set
one.

Comparing Two Sample Sets for SLC Calibration
and Prediction

Table II lists SEC, R2 (from calibration), and SEP for SLC from
three combinations of the two sample sets. The calibration equa-
tions were developed with standard normal variate (SNV) and first
derivative pretreatment, modified partial least squares (MPLS)

regression, seven PCs, and combined wavelength ranges of 400–
700 nm and 1,500–2,500 nm. Predicted SLC versus measured
SLC is shown in Fig. 4.

All three sample set combinations gave high coefficients of
determination (R2 = 0.99). The SECs from these combinations
were 0.026, 0.027, and 0.024% SLC, respectively. As mentioned
earlier, SLC measurements had an error of 0.027% SLC. Conse-
quently, these data combinations and calibrations resulted in SECs
at the same level as the SLC measurement error.

Fig. 4. Predicted surface lipid content versus measured surface lipid
content via petroleum ether extraction. A, set one for calibration, set two
for validation; B, set two for calibration, set one for validation; C, 100
random samples for calibration, 63 random samples for validation.

A

B

C
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Combination I yielded an SEP of 0.11% SLC, which was
approximately four times the SLC measurement error (Fig. 4A).
Combination II reduced the SEP to 0.06% SLC (2.2 times the
SLC measurement error) (Fig. 4B). The best prediction was from
combination III (Fig. 4C). In this case, SEP was reduced to 0.04%
SLC (1.5 times the SEC and the SLC measurement error).

It can be concluded that the SEC was not significantly influ-
enced by the sample set combination but that the SEP was signifi-
cantly affected. For reliable prediction of SLC, calibration equa-
tions should be developed on the basis of a mixed sample set,
where independent factors such as variety, kernel thickness,
moisture content, etc. are fully represented. Further experiments
remain to expand our current sample sets with more factors and
more uniform sample distribution for each factor.

Optimal Calibration and Prediction
In Table III, four wavelength ranges were compared for the

optimal calibration and prediction. The calibration equations were
developed with sample set combination III, SNV and first deriva-
tive pretreatment, MPLS regression, and seven PCs. Of the four
wavelength ranges, the visible wavelength range (400–700 nm)
resulted in the highest SEC (0.04% SLC) and SEP (0.07). The
NIR range (1,500–2,500 nm) reduced the SEC and SEP to 0.03
and 0.05% SLC, respectively. The best calibration and prediction
were obtained by the combined visible/NIR wavelength range

(400–700 nm, and 1,500–2,500 nm). Extending the combined
wavelength range to the entire visible/NIR spectrum (400–2,500
nm) did not improve the SEC and SEP.

Scatter correction and derivative pretreatment methods were
also evaluated, with respect to calibration and prediction. The
calibration equations were developed with sample set combination
III, MPLS regression, seven PCs, and combined wavelength
ranges of 400–700 nm and 1,500–2,500 nm. Table IV shows SEC,
R2 (for calibration), and SEP before and after three scatter correc-
tion methods (SNV, Detrend, and MSC) were applied to the first
derivative of the spectral data. Without scatter correction, SEC
and SEP were 0.026 and 0.05% SLC, respectively. All three scat-
ter correction methods slightly reduced the SEC. SNV and MSC
reduced the SEP to 0.04% SLC, and Detrend actually increased
the SEP to 0.06% SLC. SNV and MSC were therefore selected.
Table V shows the SEC, R2 (for calibration), and SEP before and
after the first and second derivative were applied to the spectral
data (log[1/R]) pretreated with SNV. Compared to the SEC and
SEP without derivative treatment, the first derivative reduced SEC
and SEP, while the second derivative did not. The first derivative
therefore improved both calibration and prediction for SLC.

In addition to spectral pretreatment, spectral regression tech-
niques were also evaluated. The calibration equations were devel-
oped with sample set combination III, SNV and first derivative
pretreatment, and combined wavelength ranges of 400–700 nm
and 1,500–2,500 nm. Table VI shows SEC and R2 of the calibra-
tion equations developed by means of four multilinear regression
methods and the optimal numbers of terms or PCs as derived by
means of cross-validation (ISI International 1995) in calibration
development. The corresponding SEPs from these equations are
also listed in Table VI. PCR with nine PCs yielded the worst cali-
bration (SEC = 0.06% SLC) and prediction (SEP = 0.1% SLC).
By means of the stepwise regression technique, a calibration
equation was built on the basis of eight wavelengths (436, 620,
1,712, 1,724, 1,800, 2,024, 2,088, and 2,240 nm). This equation
had an SEC and SEP of 0.03 and 0.06% SLC, respectively, which
were approximately equal to the calibration results for PLS with
five PCs. The best calibration and prediction were obtained by the
MPLS regression technique with seven PCs. The resulting SEP
(0.04% SLC) was 67% of the SEP resulting from stepwise and
PLS regression, and 40% of the SEP resulting from the PCR
method.

In developing calibration equations by means of PCR, PLS, or
MPLS techniques, the number of PCs is an important factor
affecting SEP. As an example, Fig. 5 shows this effect on the SEP
when MPLS was performed to develop the calibration equation.

TABLE IV
Standard Error of Calibration (SEC), Coefficient of Determination (R2,
for Calibration), and Standard Error of Prediction (SEP), as Affected by

Different Scatter Correction Methodsa

Scatter Correction Methodsb
SEC

(%SLC) R2
SEP

(%SLC)

None 0.026 0.99 0.05
SNV 0.024 0.99 0.04
Detrend 0.025 0.99 0.06
MSC 0.023 0.99 0.04

a Sample set: combination III; pretreatment: first derivative; regression:
modified partial least squares (MPLS); wavelength ranges: 400–700 and
1,500–2,500 nm; number of PCs: seven.

b SNV = standard normal variate, MSC = multiplicative scatter correction.

TABLE V
Standard Error of Calibration (SEC), Coefficient of Determination (R2,
for Calibration), and Standard Error of Prediction (SEP), as Affected by

Spectral Derivative Treatmentsa

Derivative SEC (%SLC) R2 SEP (%SLC)

None 0.032 0.98 0.05
First 0.024 0.99 0.04
Second 0.031 0.99 0.05

a Sample set: combination III; pretreatment: standard normal variate (SNV);
regression: modified partial least squares (MPLS); wavelength ranges: 400–
700 and 1,500–2,500 nm; number of PCs: seven.

TABLE VI
Standard Error of Calibration (SEC), Coefficient of Determination (R2,
for Calibration), and Standard Error of Prediction (SEP) from Different

Multiple Linear Regression Methodsa

Regression
Methodsb

Number of Terms
or PCs

SEC
(%SLC) R2

SEP
(%SLC)

Stepwise 8 0.03 0.98 0.06
PCR 9 0.06 0.95 0.10
PLS 5 0.04 0.97 0.06
MPLS 7 0.024 0.99 0.04

a Sample set: combination III; pretreatment: standard normal variate and first
derivative; wavelength ranges: 400–700 nm and 1,500–2,500 nm. Optimal
numbers of terms or PCs are based on cross-validation procedures.

b PCA = principal component analysis, PLS = partial least squares, MPLS =
modified partial least squares.

Fig. 5. Effect of number of principal components on standard error of
prediction (SEP), for modified partial least squares. SLC = surface lipid
content.
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Using one PC resulted in an equation with a very large SEP
(0.17% SLC). The SEP decreased dramatically when the number
of PCs was increased to three, and reached the lowest (0.04%
SLC) at five to seven PCs. The SEP tended to increase again as
the number of PCs was increased past seven, due to data overfit-
ting. In the reported MPLS calibrations, seven PCs were included
in the calibration equation.

CONCLUSIONS

Two sample sets were prepared, with one containing two inde-
pendent factors (variety and DOM) and another containing three
independent factors (variety, DOM, and kernel size). The calibra-
tion equations developed from both sample sets had similar SECs.
However, the calibration equation from the set with three factors
yielded much better accuracy in predicting SLC than did that from
the set with two factors. Combining both sets yielded even better
accuracy in prediction.

The motivation for these analyses (i.e., using two different
sample sets) lies in the novelty of SLC as an economically im-
portant but non-natural variable. Past research by others, previ-
ously mentioned, focused on correlating factors such as chemical
composition and physical properties to reflectance or transmit-
tance. In these studies, the calibration and validation sample sets
included a naturally occurring range of the factors of interest. In
contrast, variability in SLC is caused primarily by changes in the
process that created the samples (i.e., milling). Consequently, it is
especially important to ensure that any calibrations for this type of
factor (i.e., non-natural) are developed from an appropriate sample
set, in order to maximize calibration robustness.

With respect to calibration optimization, the combination of
visible and NIR ranges yielded the best calibration and prediction.
Given these spectral data, SNV and multiplicative scatter correc-
tion were recommended as scatter correction methods for optimal
calibration and prediction. Additionally, the first derivative spectra
improved calibration and prediction accuracy. MPLS, with 5–7
PCs, yielded the best calibration and prediction among several
regression methods. The resulting SEC (0.024% SLC) was at the
same level as the SLC reference measurement error, and SEP
(0.04% SLC) was ≈1.5 × reference measurement error.
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