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Prediction of Rice Sensory Texture Attributes from a
Single Compression Test, Multivariate Regression,
and a Stepwise Model Optimization Method
A. SESMAT AND J.-F. MEULLENET

ABSTRACT: Sensory texture characteristics of cooked rice (92 samples) were predicted using a compression test and
a novel multivariate analysis method (that is, Partial Least Squares Regression optimized by a stepwise method). 11
sensory texture characteristics were evaluated via a trained descriptive panel, and 14 instrumental parameters from
a compression test were used in combination with Partial Least Squares Regression to evaluate predictive models
for each of the sensory attributes studied.
Among the texture attributes evaluated by the panel, 7 (cohesion of bolus, adhesion to lips, hardness, cohesiveness of
mass, roughness of mass, toothpull, and toothpack) were satisfactorily predicted after the optimization by the
stepwise method (optimized Rcal ..... 0.6).
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Introduction

COOKED RICE TEXTURE HAS BEEN SHOWN TO GOVERN THE
acceptance of rice by consumers when consumed as

whole grain (Okabe 1979). Texture has been defined as a mul-
tidimensional characteristic that only humans can perceive,
define, and measure (Szczesniak 1987). As such, descriptive
analysis is a useful tool for characterizing texture properties
of cooked rice. However, the cost associated with training
and maintaining a descriptive panel has prompted many re-
searchers to evaluate less costly and less time-consuming
approaches. The evaluation of texture properties involving
the use of instruments specifically designed for the evalua-
tion of the physical characteristics of food is a common
practice in the food industry. The 2 approaches, sensorial
and instrumental, are often explored simultaneously; the aim
being to evaluate correlations between the 2 methods (Szcz-
esniak 1968) to potentially derive an instrumental method
capable of predicting the sensory characteristics of a food on
a routine basis.

Many researchers have studied the instrumental evalua-
tion of cooked rice texture, and several instrumental meth-
ods have been examined. At present, 1 of the most popular
and reliable instrumental methods involves the use of an Ot-
tawa extrusion cell (Meullenet and others 1998; Juliano and
others 1984). The dimensions of the traditional Ottawa cell
require rather large quantities (that is, around 100 g of milled
rice) of rice for evaluation. In many instances, rice breeders
cultivate small experimental plots, and the small amounts of
rice yielded do not allow for such instrumental testing. As a
result, there is a need for developing instrumental methods
that correlate highly with sensory properties and are less de-
manding on sample quantities. Compression tests, which re-
quire smaller sample sizes, performed between flat plates
have been described by several researchers (Juliano and oth-
ers 1981, 1984; Okabe 1979; Szczesniak and Hall 1974).
Juliano and others (1984) demonstrated that an instrumental
method utilizing small sample sizes (that is, a few kernels)

was less reliable than a test performed on bulk samples.
However, the successful development of a technique requir-
ing only a few kernels to be performed would be invaluable
to rice-breeding programs to quickly and inexpensively as-
sess texture characteristics of cooked rice.

The objectives of this study were (1) to evaluate the suitabili-
ty of an instrumental compression test requiring small rice
samples suitable for predicting cooked rice texture characteris-
tics and (2) to evaluate the use of Partial Least Regression for
developing predictive models of specific texture attributes.

Materials and Methods

Rice samples
All varieties were harvested in 1998 from the University of

Arkansas Rice Research and Extension Center in Stuttgart,
Ark., U.S.A. Harvest moisture contents of the rice varieties
were between 17% and 19% (wet base). The rice was immedi-
ately cleaned using a Carter-Day Dockage Tester (Carter-Day
Co., Minneapolis, Minn., U.S.A.). It was then placed in plastic,
airtight buckets, and stored at 210 8C for approximately 2
wk. The rice was then dried using a Parameter Control Gen-
erator Unit in a laboratory scale dryer at 43.3 8C and 38.2%
RH for 75 min.

The 1st sample set (75 samples) included only 3 rice variet-
ies (that is, Drew (D), Bengal (B), and Kaybonnet (K)) and
constituted samples involved in drying and storage studies
conducted by the University of Arkansas Rice Processing
Program. Drew and Bengal samples were dried under low-
temperature conditions (43.3 8C, 38.2% RH, 9.5% EMC, 75
min), while Kaybonnet was dried under both low-tempera-
ture conditions (KL) and high-temperature conditions (KH)
(60.0 8C, 16.9% RH, 5.8% EMC, 20 min). Drew and Kaybonnet
are 2 long-grain rice varieties, while Bengal is a medium-
grain variety.

After drying, each rice variety was divided into 3 lots to be
equilibrated to the final moisture contents of 10%, 12%, and
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14%. Equilibration occurred in wooden framed wire-mesh
trays (rice layer ½ inch deep) in air-controlled chambers un-
til the target moisture content (mc) was reached. Samples of
each variety (Kaybonnet (KL and KH), Drew (D), and Bengal
(B)) at each moisture content (10%,12%, and 14%) were
again divided into thirds, placed in airtight plastic buckets,
and stored at 4, 21, or 38 8C. Samples were evaluated at vari-
ous stages of storage (0, 3, 6, 12, 24, 30, and 36 wk). However,
all samples were not evaluated at all dates. For example,
Bengal rice was included in the study only at time 0. A list of
the 75 samples evaluated is presented in Table 1.

In addition, 17 cultivars obtained from the same location
were used as an additional set of samples. These samples
were dried under low-temperature conditions (43.3 8C,
38.2% RH, 9.5% EMC, 75 min), equilibrated to a final mois-
ture content of 12%, and stored at 21 8C for 18 wk. Cultivars
and varieties included in this sample set were: 89Y-235,
RU9601053, RU9601096, RU961099, STG93M6-104 (that is, 5
cultivars), Arkrose, Baldo, Bengal, Dellrose, Drew, Irga 409,
Koshihikari1, Koshihikari2, M202, Nato, S201, and Toro2 (that
is, 12 varieties).

Prior to milling, the samples were allowed to equilibrate
to room temperature. A McGill sample sheller (husker) was

used to remove the hulls, and a McGill No. 2 mill to remove
the bran. Samples were milled to a constant degree of milling
(DOM 5 90). The DOM was measured using a Satake Milling
Meter MM-1B. Only head rice was used for sensory and in-
strumental testing.

Sensory evaluation
Sensory methodology. 11 trained panelists with 3 years of

experience in descriptive analysis techniques according to the
spectrum methodology (Sensory Spectrum, Chatham, N.J.,
U.S.A.) evaluated and tested 11 texture attributes of cooked
rice. The attributes and their definitions are described in Table
2. The 11 attributes evaluated were tested during 4 evaluation
stages. Panelists used paper ballots and numbers between 0
and 15 (Meilgaard and others 1991) with 1 significant digit to
quantify sensory scores. References were provided to panel-
ists to use as anchors for specific attributes.

Sample preparation for the sensory evaluation. Rice
samples (300 g) were cooked in household rice cookers (Na-
tional, model SR-W10FN) with a 1:2 rice to water ratio ac-
cording to methods described by Meullenet and others
(1999). Samples were presented at 7562 8C in preheated glass
bowls insulated with Styrofoam cups and covered with watch

Table 1—List of samples evaluated from postharvest processing studies

Storage duration

variety MC a STb time 0 time 1 time 2 time 3 time 4 time 5 time 6 time 7
°C (0 week) 3 weeks 6 weeks 12 weeks 18 weeks 24 weeks 30 weeks 36 weeks

4 * * * *
10 21 * * * * *

38 * * * *
4 * * * *

Drew 12 21 * * * * *
38 * * * *
4 * * * *

14 21 * * * * *
38 * * * *

4
10 21 *

38
4

Bengal 12 21 *
38
4

14 21 *
38

4
10 21 *

38
4

Kaybonnet 12 21 *
high temperature 38
treatment KH 4

14 21 *
38

4 * * *
10 21 * * * *

38 * * *
4 * * *

Kaybonnet 12 21 * * * *
low temperature 38 * * *
treatment KL 4 * * *

14 21 * * * *
38 * * *

arough rice storage moisture content
brough rice storage temprature (°C)
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glasses labeled with 3-digit codes. Panelists were instructed
to monitor temperature closely during the test and to com-
plete the evaluation before the temperature of the sample
dropped to 60 8C (140 8F). Water and soda crackers were pro-
vided to panelists to clean their palates between each sam-
ple. The serving order was randomized across treatments
but not across panelists due to sample availability and im-
portance of sample temperature. Samples were presented 1
at the time to the panelists who sat in individual booths fea-
turing incandescent lighting and positive pressure. Eleven to
15 samples were presented for evaluation at each of the test-
ing sessions. Samples were evaluated twice by the panelists
on 2 consecutive testing sessions. At the beginning of each
session, a reference rice sample was presented as a warm-up
sample.

Instrumental texture analysis
Sample preparation for instrumental analysis. Because

temperature greatly influences rice texture (Okabe 1979), it
must be very closely monitored so that mechanical testing is
accurate and reproducible. Previous work by Meullenet and
others (1998) was performed using rinsed cooked rice at room
temperature. It was determined (Meullenet and others 1998,

1999) that evaluating cooked rice texture at room temperature
did not represent optimal testing conditions and did not
closely mimic sensory evaluation protocols. Thus, a cooking
protocol similar to that used for sensory testing was devel-
oped. However, because the objective of this study was to de-
velop a method for rice breeders who do not have large
amounts of sample available, 10 g of milled rice were com-
bined with 17 g of water in a 100-ml beaker and steamed in a
rice cooker (National, model SR-W10FN). For uniform and
equal absorption of water by all grains, the beaker was placed
on a screen inside the rice cooker without direct contact with
the heating element. Three hundred and fifty ml of water were
added to the rice cooker, and the rice was steamed for 30 min
(that is, kept in the covered steamer on “cook” position).

Five kernels of cooked rice were used for each instrumen-
tal replication. Since 6 replications were performed for each
sample, the beaker containing the cooked rice was kept at a
constant temperature in the rice cooker set on the “warm”
position. Each rice sample was cooked twice for instrumen-
tal evaluation.

Flat plate compression test. The Texture Analyzer (model
TA-XT2i, Texture Technologies Corp., Scarsdale, N.Y., U.S.A.)
was used to perform the compression test. Five intact rice

Table 2—Vocabulary for sensory texture attributes of cooked rice

TERM DEFINITION TECHNIQUE

INITIAL STAGE

Cohesion Of Bollus The degree to which the unchewed Place ¼ teaspoon of sample in mouth and immediately
sample holds or ticks together. evaluate how  tightly the mass is sticking or holding

together. Do not chew or manipulate!

Particle Size The amount of space the particle Place sample in center of mouth and evaluate. Do not
takes up in the mouth. chew or manipulate!

PARTIAL COMPRESSION STAGE

Adhesion To Lips The degree to which the sample Compress sample between lips, release and evaluate
adheres to the lips. the degree to which the product remains on the lips.

FIRST BITE / CHEW

Hardness The force required to compress Compress or bite through sample one time with
the sample. molars or incisors.

Cohesiveness The amount the sample deforms rather Place sample between the molar teeth and compress
than splits apart, cracks or breaks. fully. May also be done with incisors.

CHEWDOWN

Cohesiveness Of Mass The amount that the chewed sample Chew sample with molar teeth up to 15 times and
holds together. evaluate.  (Loose Mass—Tight Mass)

Macro Roughness Of Mass The amount of roughness perceived on Chew the sample with molars and evaluate the
the surface of the chewed sample. irregularities on the surface of the  sample mass.
Hint: You are looking for the large lumps,
bumps, hills and valleys, etc.

Toothpull The force required to separate the Chew sample 2 - 3 times and evaluate.
jaws during mastication.

RESIDUAL

Residual Film The amount and degree of residue felt Swallow the sample and feel the surface of the mouth
by the tongue when moved over the with the tongue to evaluate.
surface of the mouth.

Toothpack The amount of product packed into the Chew sample 10-15 times, expectorate and feel the
crowns of your teeth after mastication. surface of the crowns of the teeth to evaluate.

Loose Particles The amount of particles remaining in Chew sample with molars, swallow and evaluate.
and on the surface of the mouth
after swallowing.
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kernels were placed in a single layer on a clean flat aluminum
base. The clearance between the top compression plate (100-
mm dia) and the base was set at 5.4 mm. A 5-kg maximum-
load load cell was used, and the compression plate traveled
for a distance defined to compress the kernels to 90% of their
original height. The crosshead pretest speed was set at 2mm/
s, while the test speed and the post-test speed were set at 0.5
mm/s. Data were collected using the Texture Expert (version
1.17 Stable Macro System, England). The data acquisition rate
was set at 26 points per s. Force in g required to compress the
sample was recorded as a function of the distance traveled by
the plunger (% of strain), and 6 replications were performed
for each sample. An example of a typical curve and the defini-
tions of the calculated instrumental parameters are given in
Fig. 1. For this instrumental test, 2 test stages were defined:
compression and adhesion. The compression stage was de-
fined as the stage where the flat plate compression contacted
5 rice kernels and traveled until it reached the maximum dis-
tance (from A to B, Fig. 1). The adhesion stage of the curve
was defined as the stage from the point at which the flat plate
started to travel back to its original position (from B to C, Fig.
1) until it returned to the point it first contacted the rice ker-
nels. A macro was written using Texture Expert to calculate 14
instrumental parameters.

Statistical analysis
The means of each instrumental parameter for each sam-

ple were calculated using proc Means (SAS (version 7.0) Cary,

N.C., U.S.A.). Unscrambler (version 6.11b, CAMO, Trondheim,
Norway, 1996), a multivariate analysis software, was used to
determine predictive models of sensory texture attributes us-
ing the 14 instrumental parameters as predictors. Partial Least
Squares (option PLS1) Regression was used for predicting
each sensory attribute from these parameters. The full cross-
validation method was employed to evaluate model robust-
ness. The accuracy of the prediction was expressed using the
Root Mean Square Error of Prediction (RMSEP). RMSEP mea-
sures the average difference between predicted and measured
response values. With the full cross-validation, some samples
are kept out of the calibration and used for prediction. This
process is repeated until all samples are kept out of the model
once. Model validation is a way to test a model and estimate
the prediction error for future predictions. The lower the RM-
SEP calculated, the more accurate the prediction will be.
However, the standard deviation of the sensory intensities
across all samples for a particular attribute (Stot) has to be
considered as well. The ratio of Stot/RMSEP was useful to es-
timate the relative error made by the prediction model com-
pared with the average difference reported by the panelists
between all the samples. This ratio has to be as high as possi-
ble to minimize the prediction error.

The ratio of Root Square Error of Prediction and Root
Square Error of Calibration (RMSEP/RMSEC) was also used
as an indication of model robustness. The calibration model
was evaluated using all the samples, and RMSEC is the aver-
age deviation of the predicted value from the observed sen-
sory intensity. The RMSEC was then compared to the RMSEP
calculated by the cross-validation method. A ratio of RMSEP
to RMSEC close to 1 indicated a robust model, showing that
the removal of a sample from the data did not increase the
prediction error.

The correlation coefficient for the calibration (RCal) and
the validation (RVal) models were also used to evaluate the
quality of both models. RVal was considered to be most im-
portant because the validation statistics are most indicative
of the future performance of the predictive models devel-
oped. The accuracy of the model was described as its faith-
fulness (that is, how close the measured values were to the
actual values) (Camo 1996) and evaluated mostly by the RM-
SEC/RMSEP, Stot/RMSEP, and the RVal.

The regression coefficients expressed numerically the link
between variation in the predictors (that is, instrumental pa-
rameters) and variation in the responses (that is, sensory pa-
rameters). The prediction of each sensory attribute was most
highly influenced by the instrumental parameters with the
highest weighted regression coefficients (r).

The concept for this analysis is based on the prediction of
sensory texture characteristics from arbitrarily chosen in-
strumental parameters. Among these parameters, many are
probably not useful for the prediction of a given attribute
and will create noise in the predictive model. In an attempt
to remove variables creating noise in the models, a novel
method was used to optimize the original models.

Model optimization
The optimization process was designed to minimize the

RMSEP and optimize Rval.
For each sensory attribute, several sets of PLS regression

models were evaluated.
First, 1 of the instrumental parameters was systematically

kept out of the calculation.
This process was repeated until each 1 of the instrumental

parameters was kept out of the model once (that is, a total of
Fig. 1—Sample force-distance curve of a compression test
for cooked rice



128 JOURNAL OF FOOD SCIENCE—Vol. 66, No. 1, 2001

Food Engineering and Physical Properties

Rice Sensory Texture Attributes . . .

14 models).
Among all the models, the 1 exhibiting the smallest RM-

SEP was selected (that is, RMSEP minimum and Rval maxi-
mum). The RMSEP of this model was then compared to that
of the full regression model. If found to be smaller, it was
concluded that the instrumental parameter kept out of the
calculation was detrimental to the prediction of the sensory
attribute. The instrumental parameter was identified and
kept out for further optimization.

The same process was repeated (that is, removing 1 in-
strumental parameter from the predictive model at a time)
using the remaining 13 instrumental parameters. The RMSEP
of the best model was then compared to that of the best
model found for the previous optimization step. If found to
be smaller, the process was repeated with the 12 remaining
instrumental parameters. These manipulations were repeat-
ed until removing a variable from the model caused an in-
crease in RMSEP. An example of model optimization by the
stepwise method is given in Table 3.

Results and Discussion

Prediction of cooked rice texture
Among the texture attributes evaluated by the sensory

panel, 7 (that is, cohesion of bolus, adhesion to lips, hard-
ness, cohesiveness of mass, roughness of mass, toothpull,
and toothpack) were satisfactory predicted using the com-
pression test and the stepwise method of optimization (opti-
mized Rcal . 0.6).

Cohesion of bolus
Cohesion of bolus was not really well predicted by the full

regression model (Rval 5 0.57, Table 4). However, results
were improved by the stepwise optimization method (Rval 5
0.61, Table 5). Furthermore, the optimized model exhibited a
RMSEP/RMSEC ratio close to 1, and the ratio of Stot/RMSEP
was high (RMSEP/RMSEC 5 1.07 and Stot/RMSEP 5 3.75,
Table 5). Hence, the model was robust, and its relative error
was low compared to the standard deviation of the cohesion
of bolus intensities across all samples. The RMSEP (24.18%,
Table 5) and RVal (17.99%, Table 5) for the optimized model
were improvements over the values for the full regression
model (Table 4). Therefore, the method of optimization em-
ployed here allowed a significant improvement of the regres-
sion model.

The optimized model was also useful in increasing the
weighted regression coefficient for the remaining variables.
After removing the variables 1 and 7 (product height and dis-
tance maximum traveled by the plunger during the test),
which were found to create noise in the model, the predic-
tion was most highly influenced by the maximum negative
force value (v8) and the area between the distance axis and
the negative part of the compression curve (v14). The regres-
sion coefficients need to be discussed as a way to determine
what variables are most important. The weighted coefficients
for these parameters were negative (r8 5 20.18 and r14 5
20.28). Since these 2 parameters were evaluated during the
adhesion stage of the test, it is not surprising to find a corre-
lation with the cohesion of bolus, which represents an indi-
rect measurement of sample stickiness.

Adhesion to lips
Adhesion to lips was predicted well using all 14 predictive

variables (Table 4). Model optimization improved the RMSEP
value by 4.97% (Table 5). The correlation coefficient for the Ta
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validation model was the highest (Rval 5 0.84,
Table 5), RMSEP/RMSEC (1.05, Table 5) was
really close to 1, and Stot/RMSEP was rela-
tively high (4.02, Table 5). The model was ro-
bust enough, and the prediction was mainly
influenced by 3 instrumental parameters: the
product height (r1 5 0.44, Table 5), the dis-
tance traveled by the plunger at the maximum
negative force (r9 5 20.25, Table 5), and the
negative area under the curve (r14 5 20.84,
Table 5). The influence of the sample height
shows that the rice samples exhibiting higher
adhesion to lips also featured a plumper ker-
nel. This is not surprising since stickier rice
kernels, such as medium-grain cultivars, are
also usually thicker. The 2 other instrumental
parameters involved in the prediction of ad-
hesion to lips were indicative of the adhesion
stage of the compression test (Fig. 1, from B
to C), a result expected for this sensory at-
tribute. The optimized model was reduced to
a total of 10 instrumental variables (Table 5).

Hardness
Hardness is the most commonly evaluated

sensory attribute using instrumental tests.
It was also well predicted by the optimized

model (Rval 5 0.76, Table 5) using all the vari-
ables except the maximum negative force val-
ue. The most important instrumental parame-
ters were found to be the negative area under
the curve (r14 5 0.21, Table 5) and the initial
force gradient or modulus (r10 5 0.14, Table
5). The latter relationship was expected be-
cause the force required to compress a hard
sample increases faster than the force re-
quired to compress a less hard sample, result-
ing in a higher initial gradient. This result is in
agreement with data reported by Meullenet
and others (1998) that demonstrated that the
hardness of the cooked rice was most highly
correlated with initial slope.

The RMSEP from the full regression model
was improved by the stepwise method
(25.08%, Table 5), and the RMSEP/RMSEC ra-
tio was the lowest of all the 7 sensory at-
tributes suitably evaluated (RMSEP/RMSEC 5
1.04, Table 5). In addition, the Stot/RMSEP ra-
tio (3.29, Table 5) was also high enough to
conclude that the optimized predictive model
of hardness has an acceptable prediction abil-
ity.

Cohesiveness of mass
Cohesiveness of mass was also 1 of the

sensory attributes well predicted by the com-
pression test data. Indeed, the performance
indicators for the optimized model described
a suitable predictive model. Rval (0.74, Table
5) was reasonably high. The RMSEP/RMSEC
ratio (1.04, Table 5) was close to 1, and the
Stot/RMSEP ratio (3.84, Table 5) was accept-
able. The prediction of cohesiveness of mass
was most highly influence by the negative area
(r14 5 20.31, Table 5) and the maximum nega- Ta
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tive force value (r8 5 20.16, Table 5).
These 2 parameters were also highly
correlated with cohesion of the bo-
lus. It was foreseeable that these 2
sensory attributes would be influ-
enced by the same instrumental pa-
rameters. The only major difference
between the 2 models was that the
cohesion of bolus model included the
distance traveled by the plunger
when the force value is at its maxi-
mum (r6 5 20.10, Table 5), while the
cohesiveness of mass model included
the maximum distance traveled by
the plunger during the test (r7 5 0.11,
Table 5).

Roughness of mass
The correlation coefficient for the

validation of the optimized model
was adequate (Rval 5 0.74, Table 5).
It was improved during optimization
(8.83%, Table 5) over the full regres-
sion model (Table 4). The RMSEP was
also decreased by 8.44% (Table 5).
Moreover, as for all the other mod-
els, the ratio RMSEP/RMSEC was
close to 1 (0.99, Table 5), and Stot/
RMSEP was somewhat high (4.35, Ta-
ble 5). The prediction of roughness of
mass was shown to be influenced by
the negative area under the curve (r11
5 0.11, Table 5) and the initial gradi-
ent (r10 5 0.08, Table 5). The most in-
fluential instrumental parameters
were the same as for hardness. Un-
fortunately, these observations could
not be related to the sensory defini-
tion of roughness of mass.

Toothpull
Toothpull showed slightly more

disappointing results than the other
sensory attributes (Rval 5 0.63, RM-
SEP/RMSEC 5 1.06, and Stot/RMSEP
5 3.43, Table 5). However, the model
was robust, and its relative error of
prediction was low. The regression
coefficients for the 11 predictive vari-
ables were all lower than 0.09 and did
not allow the identification of the
most influential instrumental vari-
ables.

Toothpack
From previous research conduct-

ed at the University of Arkansas
(Meullenet and others 1998, 1999), it
was expected to find the prediction
model for toothpack to be accept-
able. Unfortunately, toothpack was
predicted with moderate accuracy
even after the optimization process
(Rval 5 0.59, Table 5). However, the
RMSEP/RMSEC ratio was close to 1 Ta
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(1.07, Table 5), and the Stot/RMSEP ratio was the highest of
all the optimized models (5.17, Table 5). Model optimization
increased the correlation coefficient for the validation model
by 3.97% (Table 5). The optimized model featured only 6
variables. The predictive model was influenced mostly by the
negative area (r14 5 20.12, Table 5) and the product height
(r1 5 0.12, Table 5).

Others
No significant correlation (Rcal , 0.6) between sensory

attributes and instrumental parameters were reported for
particles size, cohesiveness, loose particles, and residual film.

Discussion

IN ORDER TO COMPLETELY APPRECIATE THE PERFORMANCE OF
the compression test and evaluate its ability to predict

cooked rice texture attributes, it would be necessary to
compare the results obtained here with a test performed on
bulk samples ( Juliano and others 1981). Even if this was not
done on this set of samples, Meullenet and others (1999) re-
ported testing a similar set of samples using a rice extrusion
test. The calculated RMSEPs were, in general, smaller than
those reported in the present study. This result could be
due to the performances of the 2 different tests or to other
factors such as the amount of variation reported for the
sample sets.

However, the results presented here for adhesion to lips
(that is, an indicator of rice stickiness and 1 of the most im-
portant texture characteristics of rice) were improved (Rval
5 0.84) over those reported using the extrusion test (RVal 5
0.77). This result is not surprising since the extrusion test was
performed using only the downward movement of the ex-
trusion piston, while the compression test considered instru-
mental parameters calculated in tension. This reasoning is
strengthened by the fact that the model for adhesion to lips
was most affected by the maximum negative force (v8) and
the negative area under the curve (v14).

Conclusions

THE USE OF A COMPRESSION TEST IN COMBINATION WITH
multivariate analysis techniques and the stepwise optimi-

zation method allowed the satisfactory prediction of 7 main

sensory attributes of cooked rice texture (cohesion of bolus,
adhesion to lips, hardness, cohesiveness of mass, roughness
of mass, toothpull, and toothpack). The compression test has
some limitations because it uses few kernels that may not be
representative of the distribution of kernel properties.
Juliano and others (1981) also reported that both instrument
methods gave significantly correlated values for some senso-
ry attributes (that is, hardness and stickiness), but data ob-
tained on bulk instead of individual grains were more repro-
ducible.

Although the method presented here might be less repro-
ducible than extrusion tests and its prediction error could be
slightly higher, it has the important advantage of being less de-
manding on rice sample quantities. Consequently, this test
could be used in rice-breeding programs to rapidly, accurate-
ly, and inexpensively assess texture of cooked rice in a manner
that adequately reflects several key sensory attributes.
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